In this paper we study the following nonlinear Choquard equation −Δu+u=ln[Formula presented]∗F(u)f(u),inR2,where f∈C1(R,R) and F is the primitive of the nonlinearity f vanishing at zero. We use an asymptotic approximation approach to establish the existence of positive solutions to the above problem in the standard Sobolev space H1(R2). We give a new proof and at the same time extend part of the results established in (Cassani-Tarsi, Calc.Var.PDE, 2021).

Positive solutions to the planar logarithmic Choquard equation with exponential nonlinearity

Cassani D.
;
Du L.;Liu Z.
2024-01-01

Abstract

In this paper we study the following nonlinear Choquard equation −Δu+u=ln[Formula presented]∗F(u)f(u),inR2,where f∈C1(R,R) and F is the primitive of the nonlinearity f vanishing at zero. We use an asymptotic approximation approach to establish the existence of positive solutions to the above problem in the standard Sobolev space H1(R2). We give a new proof and at the same time extend part of the results established in (Cassani-Tarsi, Calc.Var.PDE, 2021).
2024
2023
Asymptotic analysis; Concentration-compactness principle; Critical growth; Schrödinger-Poisson systems; Variational method
Cassani, D.; Du, L.; Liu, Z.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0362546X23002717-main.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 635.76 kB
Formato Adobe PDF
635.76 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2166132
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact