We prove Liouville type results for non-negative solutions of the differential inequality δφu≥f(u)ℓ(|∇0u|) on the Heisenberg group under a generalized Keller-Osserman condition. The operator δφu is the φ-Laplacian defined by div0(|∇0u|-1φ(|∇0u|)∇0u) and φ, f and ℓ satisfy mild structural conditions. In particular, ℓ is allowed to vanish at the origin. A key tool that can be of independent interest is a strong maximum principle for solutions of such differential inequality.

Liouville type results and a maximum principle for non-linear differential operators on the Heisenberg group

Magliaro M
2014-01-01

Abstract

We prove Liouville type results for non-negative solutions of the differential inequality δφu≥f(u)ℓ(|∇0u|) on the Heisenberg group under a generalized Keller-Osserman condition. The operator δφu is the φ-Laplacian defined by div0(|∇0u|-1φ(|∇0u|)∇0u) and φ, f and ℓ satisfy mild structural conditions. In particular, ℓ is allowed to vanish at the origin. A key tool that can be of independent interest is a strong maximum principle for solutions of such differential inequality.
2014
2014
Liouville theorem; Keller-Osserman; Heisenberg group
Brandolini, L; Magliaro, M
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0022247X14001218-main (1).pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 424.02 kB
Formato Adobe PDF
424.02 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2166315
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact