The degree of convexity of a convex polyomino P is the smallest integer k such that any two cells of P can be joined by a monotone path inside P with at most k changes of direction. In this paper we show that one can compute in polynomial time the number of polyominoes of area n and degree of convexity at most 2 (the so-called Z-convex polyominoes). The integer sequence that we have computed allows us to conjecture the asymptotic number an of Z-convex polyominoes of area n, ɑn ∼ C·exp(π)√11n/4⁄n3/2.

Asymptotics of Z-convex polyominoes

Paolo Massazza
;
2024-01-01

Abstract

The degree of convexity of a convex polyomino P is the smallest integer k such that any two cells of P can be joined by a monotone path inside P with at most k changes of direction. In this paper we show that one can compute in polynomial time the number of polyominoes of area n and degree of convexity at most 2 (the so-called Z-convex polyominoes). The integer sequence that we have computed allows us to conjecture the asymptotic number an of Z-convex polyominoes of area n, ɑn ∼ C·exp(π)√11n/4⁄n3/2.
2024
2024
Convex polyominoes, counting problem, integer sequences.
Massazza, Paolo; Guttmann, Antony
File in questo prodotto:
File Dimensione Formato  
ita220046.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 5.85 MB
Formato Adobe PDF
5.85 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2167177
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact