Background: Escalating global plastic production, expected to reach 34,000 million tons by 2050, poses a significant threat to human and environmental well-being, particularly in aquatic ecosystems. Microplastics (MP) and nanoplastics (NP), which originate from the degradation of plastics, are of concern due to their potential bioaccumulation and uptake of pollutants. This study addresses identification methods and focuses on insect meal, a raw material for aquaculture feed. Methods: By using different techniques, the study was able to detect MP and NP in insect meal samples. Chemical digestion with KOH at 60 ◦C efficiently removed organic matter without affecting the synthetic polymer polyethylene (PE). Filtration, confocal Raman microscopy, SEM, and TEM were used for comprehensive analysis, and integrity tests on PE films were performed using Ramanand FTIR spectroscopy. The results showed the presence of PE microplastic particles in the insect meal, which was confirmed by correlative Raman and SEM mapping on a positively charged surface. In addition, the increased resolution of the Raman microscope identified submicrometric PE NP (800 nm). Transmission electron microscopy (TEM) with energy-dispersive X-ray spectroscopy (EDX) confirmed plastic-like structures in the insect meal, highlighting the presence of PE plastics characterized by irregular shapes and some agglomeration. The higher carbon concentration in the EDX analysis supported the plastic nature, which was also confirmed by Raman spectroscopy. Conclusions: The study provides a robust method for the detection of MP and NP in insect meal and provides valuable insight into the possible presence of plastics in insect-based aquafeeds. The combination of different analytical methods increases the reliability of the results and sets the for future investigations that could focus on the quantification of NP and the assessment of their potential environmental impact.

Detection of microplastic contamination in comercial insect meals.

Rimoldi S;Saroglia G;Terova G.
2024-01-01

Abstract

Background: Escalating global plastic production, expected to reach 34,000 million tons by 2050, poses a significant threat to human and environmental well-being, particularly in aquatic ecosystems. Microplastics (MP) and nanoplastics (NP), which originate from the degradation of plastics, are of concern due to their potential bioaccumulation and uptake of pollutants. This study addresses identification methods and focuses on insect meal, a raw material for aquaculture feed. Methods: By using different techniques, the study was able to detect MP and NP in insect meal samples. Chemical digestion with KOH at 60 ◦C efficiently removed organic matter without affecting the synthetic polymer polyethylene (PE). Filtration, confocal Raman microscopy, SEM, and TEM were used for comprehensive analysis, and integrity tests on PE films were performed using Ramanand FTIR spectroscopy. The results showed the presence of PE microplastic particles in the insect meal, which was confirmed by correlative Raman and SEM mapping on a positively charged surface. In addition, the increased resolution of the Raman microscope identified submicrometric PE NP (800 nm). Transmission electron microscopy (TEM) with energy-dispersive X-ray spectroscopy (EDX) confirmed plastic-like structures in the insect meal, highlighting the presence of PE plastics characterized by irregular shapes and some agglomeration. The higher carbon concentration in the EDX analysis supported the plastic nature, which was also confirmed by Raman spectroscopy. Conclusions: The study provides a robust method for the detection of MP and NP in insect meal and provides valuable insight into the possible presence of plastics in insect-based aquafeeds. The combination of different analytical methods increases the reliability of the results and sets the for future investigations that could focus on the quantification of NP and the assessment of their potential environmental impact.
2024
2024
https://doi.org/10.3390/environments11060112
aquaculture; insect meal; microplastics; nanoplastics; aquafeed; Raman microscopy; transmission electron microscopy (TEM); scanning electron microscope (SEM); energy-dispersive X-ray spectroscopy (EDX); Fourier-transform infrared (FTIR)
Rimoldi, S; Ponti, J; Valsesia, A; Saroglia, G; La Spina, R; Fumagalli, F; Terova, G.
File in questo prodotto:
File Dimensione Formato  
Environments, 2024 Rimoldi Microplastics Ispra_ I-FISH.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.22 MB
Formato Adobe PDF
1.22 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2172611
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact