Correlated states of light, both classical and quantum, can find useful applications in the implementation of several imaging techniques. Among the employed sources, pseudo-thermal states, generated by the passage of a laser beam through a diffuser, represent the standard choice. To produce light with a higher level of correlation, in this work we consider and characterize the speckled-speckle field obtained with two diffusers using both a numerical simulation and an experimental implementation. In order to discuss the potential usefulness of super-thermal light in imaging protocols, we analyze the behavior of some figures of merit, namely the contrast, the signal-to-noise ratio and the image resolution. The obtained results clarify the possible advantages offered by this kind of light, and at the same time better emphasize the reasons why it does not outperform pseudo-thermal light.

Speckled-speckle field as a resource for imaging techniques

Cassina S.;Cenedese G.;Allevi A.
;
Bondani M.
2024-01-01

Abstract

Correlated states of light, both classical and quantum, can find useful applications in the implementation of several imaging techniques. Among the employed sources, pseudo-thermal states, generated by the passage of a laser beam through a diffuser, represent the standard choice. To produce light with a higher level of correlation, in this work we consider and characterize the speckled-speckle field obtained with two diffusers using both a numerical simulation and an experimental implementation. In order to discuss the potential usefulness of super-thermal light in imaging protocols, we analyze the behavior of some figures of merit, namely the contrast, the signal-to-noise ratio and the image resolution. The obtained results clarify the possible advantages offered by this kind of light, and at the same time better emphasize the reasons why it does not outperform pseudo-thermal light.
2024
2024
https://www.nature.com/articles/s41598-024-64969-7
Cassina, S.; Cenedese, G.; Allevi, A.; Bondani, M.
File in questo prodotto:
File Dimensione Formato  
s41598-024-64969-7.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 6.06 MB
Formato Adobe PDF
6.06 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2178542
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact