Production of the high industrial value cis,cis-muconic acid (ccMA) from renewable biomasses is of main interest especially when biological (green) processes are used. We recently generated a E. coli strain expressing five recombinant enzymes to convert vanillin (VA, from lignin) into ccMA. Here, we optimized a growing cell approach in bioreactor for the ccMA production. The medium composition, fermentation conditions, and VA addition were tuned: pulse-feeding VA at 1 mmol/h allowed to reach 5.2 g/L of ccMA in 48 h (0.86 g ccMA/g VA), with a productivity 4-fold higher compared to the resting cells approach, thus resulting in significantly lower E-factor and Process Mass Intensity green metric parameters. The recovered ccMA has been used as building block to produce a fully bioderived polymer with rubber-like properties. The sustainable optimized bioprocess can be considered an integrated approach to develop a platform for bio-based polymers production from renewable feedstocks.

Bio-based production of cis,cis-muconic acid as platform for a sustainable polymers production

Molinari, Filippo
Primo
;
Vittore, Aniello;Santoro, Orlando;Izzo, Lorella;Pollegioni, Loredano;Rosini, Elena
2024-01-01

Abstract

Production of the high industrial value cis,cis-muconic acid (ccMA) from renewable biomasses is of main interest especially when biological (green) processes are used. We recently generated a E. coli strain expressing five recombinant enzymes to convert vanillin (VA, from lignin) into ccMA. Here, we optimized a growing cell approach in bioreactor for the ccMA production. The medium composition, fermentation conditions, and VA addition were tuned: pulse-feeding VA at 1 mmol/h allowed to reach 5.2 g/L of ccMA in 48 h (0.86 g ccMA/g VA), with a productivity 4-fold higher compared to the resting cells approach, thus resulting in significantly lower E-factor and Process Mass Intensity green metric parameters. The recovered ccMA has been used as building block to produce a fully bioderived polymer with rubber-like properties. The sustainable optimized bioprocess can be considered an integrated approach to develop a platform for bio-based polymers production from renewable feedstocks.
2024
2024
Bio-based polymers; Biotransformation; Lignin valorization; Renewable biomasses; System biocatalysis; Vanillin
Molinari, Filippo; Salini, Andrea; Vittore, Aniello; Santoro, Orlando; Izzo, Lorella; Fusco, Salvatore; Pollegioni, Loredano; Rosini, Elena
File in questo prodotto:
File Dimensione Formato  
Molinari_2024.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 5.13 MB
Formato Adobe PDF
5.13 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2180491
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact