Poly(lactic acid) (PLA), a commercially fully bio-based and biodegradable polymer, stands out as a sustainable alternative to commodity plastics. Its current end-of-life management involves composting, but chemical recycling would be more appropriate for a circular economy model. Here we report two very efficient chemical recycling pathways for commercial high molar mass and highly crystalline PLA samples, both ones promoted by different imidazole[1,5-a]pyrid-3-yl)phenolate Zn(II) catalysts: (i) alcoholysis was easily achieved by simply treating the polymer samples in boiling methanol in the presence of 1 % Zn(II) catalyst, resulting in up to 99 % yield and selectivity in methyl lactate; and (ii) chemical recycling to the monomer was achieved by heating the polymer samples at 180 °C under vacuum or in a nitrogen flow in the presence of 0.1 % Zn(II) catalyst and a highly boiling alcohol, resulting in up to 99 % yield of L-lactide, having high chemical and steric purity, which could be repolymerized without any further purification.

Efficient chemical recycling of poly(L-lactic acid) via either alcoholysis to alkyl lactate or thermal depolymerization to L-lactide promoted by Zn(II) catalysts

Stefano Brenna;
2025-01-01

Abstract

Poly(lactic acid) (PLA), a commercially fully bio-based and biodegradable polymer, stands out as a sustainable alternative to commodity plastics. Its current end-of-life management involves composting, but chemical recycling would be more appropriate for a circular economy model. Here we report two very efficient chemical recycling pathways for commercial high molar mass and highly crystalline PLA samples, both ones promoted by different imidazole[1,5-a]pyrid-3-yl)phenolate Zn(II) catalysts: (i) alcoholysis was easily achieved by simply treating the polymer samples in boiling methanol in the presence of 1 % Zn(II) catalyst, resulting in up to 99 % yield and selectivity in methyl lactate; and (ii) chemical recycling to the monomer was achieved by heating the polymer samples at 180 °C under vacuum or in a nitrogen flow in the presence of 0.1 % Zn(II) catalyst and a highly boiling alcohol, resulting in up to 99 % yield of L-lactide, having high chemical and steric purity, which could be repolymerized without any further purification.
2025
2025
Gentile, Maria; Gaeta, Licia; Brenna, Stefano; Pellecchia, Claudio
File in questo prodotto:
File Dimensione Formato  
52-Polymer testing Pellecchia.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.56 MB
Formato Adobe PDF
1.56 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2189251
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact