We study the w∗-fixed point property for nonexpansive mappings. First we show that the dual space X∗lacks the w∗-fixed point property whenever X contains an isometric copy of c. Then, the main result of our paper provides several characterizations of weak-star topologies that fail the fixed point property for nonexpansive mappings in l1. This result allows us to obtain a characterization of all separable Lindenstrauss spaces X with X∗failing the w∗-fixed point property.
Separable Lindenstrauss spaces whose duals lack the weak∗ fixed point property for nonexpansive mappings
CASINI, EMANUELE GIUSEPPE;
2017-01-01
Abstract
We study the w∗-fixed point property for nonexpansive mappings. First we show that the dual space X∗lacks the w∗-fixed point property whenever X contains an isometric copy of c. Then, the main result of our paper provides several characterizations of weak-star topologies that fail the fixed point property for nonexpansive mappings in l1. This result allows us to obtain a characterization of all separable Lindenstrauss spaces X with X∗failing the w∗-fixed point property.File | Dimensione | Formato | |
---|---|---|---|
FPP_Casini_Miglierina_Piasecki.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
DRM non definito
Dimensione
131.9 kB
Formato
Adobe PDF
|
131.9 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.