The prompt identification of the adverse effects of Contaminant of Emerging Concern (CEC) is fundamental to ensure high protection level for human health and the environment. Persistent, Bioaccumulative and Toxic (PBT) compounds are chemicals of high concern and should be readily identified. The aim of this thesis is to propose an approach based on Quantitative Structure Activity Relationship (QSAR) models for the evaluation of the intrinsic environmental hazard of CECs. First, a screening of the potential PBT behavior of pharmaceuticals is performed by consensus approach. Results demonstrate a high agreement (i.e.86%) between the different QSAR models. Then, QSARs are developed to estimate acute toxicity of pharmaceuticals in aquatic species. All models have good fitting (R2>0.75) and predictivity (Q2EXT>0.68). An Aquatic Toxicity Index is proposed and modelled. Moreover, interspecies correlation models are also developed. Finally, QSARs for the prediction of whole-body human biotransformation Half-Lives are developed for organic chemicals. Predictions for the biotransformation potential are integrated in a mechanistic mass-balance multimedia environmental fate food-web model to estimate the Biomagnification Factor (BMF) in human in a tiered approach. The introduction of biotransformation strongly affects the calculation of BMF and the elimination processes related to biotransformation are predominant in the overall bioaccumulation.

QSAR models for the screening, prediction and refinement of PBT Properties of Contaminants of Emerging Concern / Sangion, Alessandro. - (2019).

QSAR models for the screening, prediction and refinement of PBT Properties of Contaminants of Emerging Concern.

Sangion, Alessandro
2019

Abstract

The prompt identification of the adverse effects of Contaminant of Emerging Concern (CEC) is fundamental to ensure high protection level for human health and the environment. Persistent, Bioaccumulative and Toxic (PBT) compounds are chemicals of high concern and should be readily identified. The aim of this thesis is to propose an approach based on Quantitative Structure Activity Relationship (QSAR) models for the evaluation of the intrinsic environmental hazard of CECs. First, a screening of the potential PBT behavior of pharmaceuticals is performed by consensus approach. Results demonstrate a high agreement (i.e.86%) between the different QSAR models. Then, QSARs are developed to estimate acute toxicity of pharmaceuticals in aquatic species. All models have good fitting (R2>0.75) and predictivity (Q2EXT>0.68). An Aquatic Toxicity Index is proposed and modelled. Moreover, interspecies correlation models are also developed. Finally, QSARs for the prediction of whole-body human biotransformation Half-Lives are developed for organic chemicals. Predictions for the biotransformation potential are integrated in a mechanistic mass-balance multimedia environmental fate food-web model to estimate the Biomagnification Factor (BMF) in human in a tiered approach. The introduction of biotransformation strongly affects the calculation of BMF and the elimination processes related to biotransformation are predominant in the overall bioaccumulation.
QSAR, Contaminants of Emerging Concern, PBT screening, EcoToxicity, Bioaccumulation, Biotransformation
QSAR models for the screening, prediction and refinement of PBT Properties of Contaminants of Emerging Concern / Sangion, Alessandro. - (2019).
File in questo prodotto:
File Dimensione Formato  
PhD_Thesis_SangionAlessandro_articolo_EnvironmSc.pdf

embargo fino al 01/01/2100

Descrizione: articolo
Tipologia: Tesi di dottorato
Licenza: Non specificato
Dimensione 867.73 kB
Formato Adobe PDF
867.73 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
PhD_Thesis_SangionAlessandro_completa.pdf

embargo fino al 01/01/2100

Descrizione: testo completo tesi
Tipologia: Tesi di dottorato
Licenza: Non specificato
Dimensione 8.4 MB
Formato Adobe PDF
8.4 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
PhD_Thesis_SangionAlessandro_part3.pdf

embargo fino al 18/01/2021

Descrizione: testo tesi parte 3
Tipologia: Tesi di dottorato
Licenza: Non specificato
Dimensione 1.59 MB
Formato Adobe PDF
1.59 MB Adobe PDF Visualizza/Apri
PhD_Thesis_SangionAlessandro_articolo_SARandQSARinEnvironmRes.pdf

embargo fino al 01/01/2100

Descrizione: articolo
Tipologia: Tesi di dottorato
Licenza: Non specificato
Dimensione 769.47 kB
Formato Adobe PDF
769.47 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
PhD_Thesis_SangionAlessandro_articolo_FoodChemToxicol.pdf

embargo fino al 01/01/2100

Descrizione: articolo
Tipologia: Tesi di dottorato
Licenza: Non specificato
Dimensione 733.32 kB
Formato Adobe PDF
733.32 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
PhD_Thesis_SangionAlessandro_articolo_EnvironmRes.pdf

embargo fino al 01/01/2100

Descrizione: articolo
Tipologia: Tesi di dottorato
Licenza: Non specificato
Dimensione 976.49 kB
Formato Adobe PDF
976.49 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
PhD_Thesis_SangionAlessandro_part4.pdf

embargo fino al 18/01/2021

Descrizione: testo tesi parte 4
Tipologia: Tesi di dottorato
Licenza: Non specificato
Dimensione 1.58 MB
Formato Adobe PDF
1.58 MB Adobe PDF Visualizza/Apri
PhD_Thesis_SangionAlessandro_part1.pdf

embargo fino al 18/01/2021

Descrizione: testo tesi parte 1
Tipologia: Tesi di dottorato
Licenza: Non specificato
Dimensione 3.39 MB
Formato Adobe PDF
3.39 MB Adobe PDF Visualizza/Apri
PhD_Thesis_SangionAlessandro_part2.pdf

embargo fino al 18/01/2021

Descrizione: testo tesi parte 2
Tipologia: Tesi di dottorato
Licenza: Non specificato
Dimensione 3.17 MB
Formato Adobe PDF
3.17 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2090386
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact