Nowadays, optical Quantum Communication has reached a mature level, especially in free space and through optical fibers. Experimental implementations usually involve single-photon states or weak coherent states detected by single-photon detectors. In contrast to these standard configurations, in our work we consider mesoscopic twin-beam (TWB) states revealed by photon-number-resolving detectors. By properly acting on the natural divergence of the generated beams, we show that they remain nonclassical even at a moderate distance from the nonlinear crystal in which they are produced. We also consider the case where one of the two parties of TWB is partially transmitted through water, and show that the nonclassicality of the states is preserved. This result suggests that mesoscopic TWB states can be considered for the new and growing scenario of underwater Quantum Communication.
Optimizing the propagation of mesoscopic twin-beam states for novel quantum communication protocols
Allevi A.
;Molteni F.;Zambelli S.;Bondani M.
2023-01-01
Abstract
Nowadays, optical Quantum Communication has reached a mature level, especially in free space and through optical fibers. Experimental implementations usually involve single-photon states or weak coherent states detected by single-photon detectors. In contrast to these standard configurations, in our work we consider mesoscopic twin-beam (TWB) states revealed by photon-number-resolving detectors. By properly acting on the natural divergence of the generated beams, we show that they remain nonclassical even at a moderate distance from the nonlinear crystal in which they are produced. We also consider the case where one of the two parties of TWB is partially transmitted through water, and show that the nonclassicality of the states is preserved. This result suggests that mesoscopic TWB states can be considered for the new and growing scenario of underwater Quantum Communication.File | Dimensione | Formato | |
---|---|---|---|
IJQI2023.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
2.17 MB
Formato
Adobe PDF
|
2.17 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.